On weak and restrained domination in trees

نویسندگان

  • Mustapha Chellali
  • Odile Favaron
چکیده

In a graph G = (V,E) a vertex is said to dominate itself and all its neighbours. A weak dominating set is a set S ⊆ V where for every vertex u not in S there is a vertex v of S adjacent to u with dG(v) 6 dG(u) . A restrained dominating set is a set S ⊆ V where every vertex in V − S is adjacent to a vertex in S as well as another vertex in V − S . The weak domination number γw(G) (resp. restrained domination number γr(G)) is the minimum cardinality of a weak dominating set (resp. restrained dominating set). We determine sharp bounds for the weak and restrained domination numbers of a tree in terms of the domination number, the order, number of leaves and support vertices. More precisely, we show that if T is a tree of order n ≥ 3 with ` leaves and s support vertices, then γw(T ), γr(T ) > d(n + 2 + `− s)/3e , and γw(T ), γr(T ) ≥ γ(T ) + ` − s ≥ d(n + 2 + 2`− 3s)/3e improving those of Hattingh and Rautenbach. We also show that γw(T ) 6 b(n + 2` + 2s− 3)/3c and γr(T ) 6 b(n + 2` + s + 1)/3c .

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Trees with Equal Restrained Domination and Total Restrained Domination Numbers

For a graph G = (V,E), a set D ⊆ V (G) is a total restrained dominating set if it is a dominating set and both 〈D〉 and 〈V (G)−D〉 do not have isolated vertices. The cardinality of a minimum total restrained dominating set in G is the total restrained domination number. A set D ⊆ V (G) is a restrained dominating set if it is a dominating set and 〈V (G) − D〉 does not contain an isolated vertex. Th...

متن کامل

Trees with Equal Total Domination and Total Restrained Domination Numbers

For a graph G = (V, E), a set S ⊆ V (G) is a total dominating set if it is dominating and both 〈S〉 has no isolated vertices. The cardinality of a minimum total dominating set in G is the total domination number. A set S ⊆ V (G) is a total restrained dominating set if it is total dominating and 〈V (G) − S〉 has no isolated vertices. The cardinality of a minimum total restrained dominating set in ...

متن کامل

Bounds on the restrained Roman domination number of a graph

A {em Roman dominating function} on a graph $G$ is a function$f:V(G)rightarrow {0,1,2}$ satisfying the condition that everyvertex $u$ for which $f(u) = 0$ is adjacent to at least one vertex$v$ for which $f(v) =2$. {color{blue}A {em restrained Roman dominating}function} $f$ is a {color{blue} Roman dominating function if the vertices with label 0 inducea subgraph with no isolated vertex.} The wei...

متن کامل

$k$-tuple total restrained domination/domatic in graphs

‎For any integer $kgeq 1$‎, ‎a set $S$ of vertices in a graph $G=(V,E)$ is a $k$-‎tuple total dominating set of $G$ if any vertex‎ ‎of $G$ is adjacent to at least $k$ vertices in $S$‎, ‎and any vertex‎ ‎of $V-S$ is adjacent to at least $k$ vertices in $V-S$‎. ‎The minimum number of vertices of such a set‎ ‎in $G$ we call the $k$-tuple total restrained domination number of $G$‎. ‎The maximum num...

متن کامل

On the total restrained domination edge critical graphs

Let G = (V, E) be a graph. A set D ⊆ V is a total restrained dominating set of G if every vertex in V has a neighbor in D and every vertex in V −D has a neighbor in V −D. The cardinality of a minimum total restrained dominating set in G is the total restrained domination number of G. In this paper, we define the concept of total restrained domination edge critical graphs, find a lower bound for...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010