On weak and restrained domination in trees
نویسندگان
چکیده
In a graph G = (V,E) a vertex is said to dominate itself and all its neighbours. A weak dominating set is a set S ⊆ V where for every vertex u not in S there is a vertex v of S adjacent to u with dG(v) 6 dG(u) . A restrained dominating set is a set S ⊆ V where every vertex in V − S is adjacent to a vertex in S as well as another vertex in V − S . The weak domination number γw(G) (resp. restrained domination number γr(G)) is the minimum cardinality of a weak dominating set (resp. restrained dominating set). We determine sharp bounds for the weak and restrained domination numbers of a tree in terms of the domination number, the order, number of leaves and support vertices. More precisely, we show that if T is a tree of order n ≥ 3 with ` leaves and s support vertices, then γw(T ), γr(T ) > d(n + 2 + `− s)/3e , and γw(T ), γr(T ) ≥ γ(T ) + ` − s ≥ d(n + 2 + 2`− 3s)/3e improving those of Hattingh and Rautenbach. We also show that γw(T ) 6 b(n + 2` + 2s− 3)/3c and γr(T ) 6 b(n + 2` + s + 1)/3c .
منابع مشابه
Trees with Equal Restrained Domination and Total Restrained Domination Numbers
For a graph G = (V,E), a set D ⊆ V (G) is a total restrained dominating set if it is a dominating set and both 〈D〉 and 〈V (G)−D〉 do not have isolated vertices. The cardinality of a minimum total restrained dominating set in G is the total restrained domination number. A set D ⊆ V (G) is a restrained dominating set if it is a dominating set and 〈V (G) − D〉 does not contain an isolated vertex. Th...
متن کاملTrees with Equal Total Domination and Total Restrained Domination Numbers
For a graph G = (V, E), a set S ⊆ V (G) is a total dominating set if it is dominating and both 〈S〉 has no isolated vertices. The cardinality of a minimum total dominating set in G is the total domination number. A set S ⊆ V (G) is a total restrained dominating set if it is total dominating and 〈V (G) − S〉 has no isolated vertices. The cardinality of a minimum total restrained dominating set in ...
متن کاملBounds on the restrained Roman domination number of a graph
A {em Roman dominating function} on a graph $G$ is a function$f:V(G)rightarrow {0,1,2}$ satisfying the condition that everyvertex $u$ for which $f(u) = 0$ is adjacent to at least one vertex$v$ for which $f(v) =2$. {color{blue}A {em restrained Roman dominating}function} $f$ is a {color{blue} Roman dominating function if the vertices with label 0 inducea subgraph with no isolated vertex.} The wei...
متن کامل$k$-tuple total restrained domination/domatic in graphs
For any integer $kgeq 1$, a set $S$ of vertices in a graph $G=(V,E)$ is a $k$-tuple total dominating set of $G$ if any vertex of $G$ is adjacent to at least $k$ vertices in $S$, and any vertex of $V-S$ is adjacent to at least $k$ vertices in $V-S$. The minimum number of vertices of such a set in $G$ we call the $k$-tuple total restrained domination number of $G$. The maximum num...
متن کاملOn the total restrained domination edge critical graphs
Let G = (V, E) be a graph. A set D ⊆ V is a total restrained dominating set of G if every vertex in V has a neighbor in D and every vertex in V −D has a neighbor in V −D. The cardinality of a minimum total restrained dominating set in G is the total restrained domination number of G. In this paper, we define the concept of total restrained domination edge critical graphs, find a lower bound for...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2010